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We introduce multicovariate-adjusted regression (MCAR), an adjustment method for regression
analysis, where both the response (Y ) and predictors (X1, . . . , Xp) are not directly observed. The
available data have been contaminated by unknown functions of a set of observable distorting covari-
ates, Z1, . . . , Zs , in a multiplicative fashion. The proposed method substantially extends the current
contaminated regression modelling capability, by allowing for multiple distorting covariate effects.
MCAR is a flexible generalisation of the recently proposed covariate-adjusted regression method, an
effective adjustment method in the presence of a single covariate, Z. For MCAR estimation, we estab-
lish a connection between the MCAR models and adaptive varying coefficient models. This connection
leads to an adaptation of a hybrid backfitting estimation algorithm. Extensive simulations are used to
study the performance and limitations of the proposed iterative estimation algorithm. In particular, the
bias and mean square error of the proposed MCAR estimators are examined, relative to a baseline and
a consistent benchmark estimator. The method is also illustrated with a Pima Indian diabetes data set,
where the response and predictors are potentially contaminated by body mass index and triceps skin
fold thickness. Both distorting covariates measure aspects of obesity, an important risk factor in type
2 diabetes.

Keywords: covariate adjusted regression; local polynomial regression; multiplicative effect; varying-
coefficient models

2000 Mathematics Subject Classifications: 62G08; 62J02; 62J05

1. Introduction and example

Adjusting for anthropometric measurements, such as body mass index (BMI) and/or other
measures of body configuration, is common in medical or health related studies because
they are distorting variables that affect the primary variables of interest. For example, in a
study involving haemodialysis patients, a primary outcome variable is an elevated plasma
fibrinogen level [1, 2]. Fibrinogen is a protein found in blood plasma and it is a risk factor for
cardiovascular disease in haemodialysis patients. It is of interest to examine the relationship
between fibrinogen concentration and other predictors, such as serum transferrin protein level.
However, both primary variables of interest, fibrinogen and transferrin protein levels, are
known to depend on body mass index (defined as weight/height2), which exerts a distorting
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814 D. V. Nguyen and D. Şentürk

effect on the protein measurements.A common approach to adjust for the distorting covariates,
like BMI, is to normalise the primary variables of interest by simply dividing (by BMI). Note
that this adjustment by division implies that the assumed contamination is of a multiplicative
form. To set notations, let Ỹ , X̃ and Z denote the observed fibrinogen concentration, serum
transferrin level and covariate BMI, respectively. Using these notations, the adjusted primary
variables that are thought to be free from the distorting effect of BMI are,

Y = Ỹ

Z
and X = X̃

Z
. (1)

The basic motivation for the above adjustment is to obtain normalised versions of the observed
primary variables by removing the distorting covariate effects, so that the measurements are
comparable across patients. One, then, targets the regression relationship between Y and X,
free from the effects of Z.

Motivated by the practice of multiplicative adjustments for covariate effects, Şentürk and
Müller [2] proposed a more flexible multiplicative adjustment procedure for regression models.
They directly modelled the distortion through unknown functions of Z. More precisely, their
adjustment method models the underlying response and predictor variables of interest as

Y = Ỹ

ψ(Z)
, X1 = X̃1

φ1(Z)
, . . . , Xp = X̃p

φp(Z)
, (2)

where ψ(·), φ1(·), . . . ,φp(·) are unknown smooth contaminating functions of a single covari-
ate, Z. Allowing for the unknown contaminating functions in equation (2) is an appealing
aspect, from a practical point of view. This is because, in practice, the precise nature of the
multiplicative relationships between the distorting covariate and the primary variables of inter-
est is unknown. Lacking this precise knowledge, the naive practice of dividing by the covariate
in equation (1) or equivalently assuming ψ(Z) ≡ Z and φr (Z) ≡ Z in equation (2) imposes
unnecessarily rigid constraints on the form of the data contamination. Assuming a more gen-
eral contamination (2), Şentürk and Müller (2005) target the parameters from the underlying
regression model, E(Y ) = γ0 + γ1X1 + · · · + γpXp, based on the contaminated observations
(Ỹ and {X̃r}pr=1).

In many applications, there are multiple distorting covariates that simultaneously affect
the primary variables of interest. Thus, in this paper, we explore an important generalization
of the above method (for a single covariate Z) to the case of multiple distorting covariates,
namely ZT = (Z1, . . . , Zs). This generalisation allows for additional modelling flexibility by
accommodating multiple covariates. We model the distortion through unknown functions of an
unspecified linear combination of the covariates, ηTZ, where ηT = (η1, . . . , ηs) are unknown
coefficients to be estimated from the data. Thus, our adjustment method models the underlying
response and predictor variables of interest as

Y = Ỹ

ψ(ηTZ)
, X1 = X̃1

φ1(ηTZ)
, . . . , Xp = X̃p

φp(ηTZ)
. (3)

Under this general contamination by multiple covariates, Z, we target the underlying para-
meters in the linear regression model of Y on {Xr}pr=1, which is not directly observable. A
data illustration, provided in section 5, examines the underlying relationship between plasma
glucose concentration and (diastolic) blood pressure, adjusted for an obesity index based on
BMI and triceps skin fold thickness. Both distorting covariates are related to obesity, which is
an important modifiable risk factor of complications resulting from type 2 diabetes (Diabetes
Mellitus Type II). We note that under models (1) and (3) the interpretation of Y and Xr is
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Multicovariate-adjusted regression models 815

the same; that is, they are the parts of Ỹ and X̃r that are free of the effects of U (where
U = Z in the univariate case (1) and U = βTZ in the multicovariate case (3)). In the above
data example, these are the obesity index adjusted plasma glucose concentration and diastolic
blood pressure.

Adjusting for multiple distorting covariates poses many additional challenges over the case
of a single known covariate (2). For example, the computational complexity increases sub-
stantially because both the unknown contaminating functions (ψ(·) and φr (·), r = 1, . . . , p)
and their index ηTZ need to be estimated simultaneously in order to obtain the underlying
regression parameters ({γr}pr=0). This is feasible through the use of the one-dimensional index
or linear combination, ηTZ, which helps deal with the curse of dimensionality.

Also, the proposed adjustment method adjusts for multiplicative distortion, as well as
additive (i.e., Ỹ = Y + ψ(ηTZ), X̃r = Xr + φr (η

TZ)) and no distortion (i.e., ψ(ηTZ) =
φr (η

TZ) = 0 under additive and ψ(ηTZ) = φr (η
TZ) = 1 under multiplicative distortions as

in [2]). This is mainly due to the identifiability conditions given in detail in section 2. If addi-
tive distortion is known or assumed, then it can be handled with partial regression methods.
However, there is no adjustment method available for handling multiplicative and multi-
covariate distortion. The proposed multicovariate-adjusted regression (MCAR) adjustment
handle these types of distortion automatically without prior specification of the exact type
(i.e., multiplicative, additive or no distortion).

The paper is organised as follows. We describe the formulation of MCAR and establish an
important relationship between the MCAR model and the adaptive varying coefficient model
of the form E(Ỹ |X̃, Z) = ∑p

r=0 βr (η
TZ)X̃r (X̃0 ≡ 1) in section 2. This result leads us to adapt

a hybrid backfitting algorithm (section 3) to estimate the unknown varying functions βr (·) and
the coefficient vector η simultaneously, which are needed for the estimation of γ . Simulation
studies in section 4 examine the performance and limitations of the proposed method. We
(a) compare the bias and mean square error of the proposed iterative MCAR estimator to a
baseline and a consistent benchmark estimator, (b) assess the sensitivity of the algorithm to the
starting values for η and (c) examine the sample size effect. The MCAR method is illustrated
in section 5 with a data set on diabetes in females with Pima Indian heritage. We conclude
with a discussion in section 6.

2. Multicovariate-adjusted regression models

Consider the problem of estimating the parameters {γr}pr=0 of the model

Yi = γ0 +
p∑

r=1

γrXir + ei, (4)

where Yi and {Xir}pr=0 are the response and predictor values corresponding to the ith subject,
respectively. The error variable ei has E(ei) = 0 and var(ei) = σ 2. We only observe n copies
of distorted predictor and response data, {Ỹi , X̃i}ni=1, along with multiple covariates Zi , where

Ỹi = ψ(ηTZi )Yi and X̃ir = φr (η
TZi )Xir, r = 1, . . . , p. (5)

Some constraints on the unknown smooth distortion functions are still needed for the iden-
tifiability of the estimation problem. A set of reasonable constraints for ψ(·) and {φr (·)} is
implied by the natural assumption that the mean distorting effect should correspond to no
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816 D. V. Nguyen and D. Şentürk

distortion [2], i.e.,

E{ψ(ηTZ)} = 1 and E{φr (η
TZ)} = 1. (6)

It is assumed that {(Xi , ZT
i , ei)}ni=1 are independent and identically distributed, where X, e

and Z are mutually independent. We refer to the multiplicative distortion model, described by
equations (4)–(6), as the MCAR model.

Our main objective is estimation of the underlying regression parameters γ , given the
contaminated observations and distorting covariates. Towards this objective, we first establish
an important relation between the estimation problem under MCAR and estimation under the
adaptive varying coefficient model. Given the contaminated observations and the distorting
covariates, a regression of Ỹ on {X̃r}pr=1 leads to the following regression relation,

E(Ỹ |X̃T
, Z) = ψ(ηTZ)E

{

γ0 +
p∑

r=1

γrXr + e|φ1(η
TZ)X1, . . . ,φp(ηTZ)Xp, Z

}

.

Further simplifications, using equation (5) and mutual independence of (e, Z and Xr ), give

E(Ỹ |X̃T
, Z) = β0(η

TZ) +
p∑

r=1

βr (η
TZ)X̃r , r = 1, . . . , p, (7)

where

β0(η
TZ) = γ0ψ(ηTZ) and βr (η

TZ) = γr{ψ(ηTZ)/φr (η
TZ)}. (8)

Thus, the MCAR model leads to the following adaptive varying coefficient model [3, 4],
Ỹ = β0(η

TZ) + ∑p
r=1 βr (η

TZ)X̃r + ε, with ε ≡ ψ(ηTZ)e. The varying coefficient functions,
βr (·) (r = 1, . . . , p), are proportional to the quotient of the original distorting functions,
{ψ(·)/φr (·)}; and the intercept function, β0(·), is proportional to ψ(·). The constants of
proportionality are the underlying regression parameters, {γr}, of interest.

Varying coefficient models [5, 6] are popular in many application areas. The literature
includes, among others, [7] on functional data analysis and [8] and [9] on nonlinear time
series. Some approaches to estimation in varying coefficient models for independent and
identically distributed data are described in [10–12]. The literature related to the adaptive
varying coefficient model (7), where the index is unknown, includes refs. [3, 4, 13, 14]. Note
also that the adaptive varying coefficient model (7) differs from the primary model considered
in [4], in that the index variable U is not a linear combination of the predictors X̃. The index
for MCAR is a linear combination of the distorting covariates, namely U = ηTZ, where the
covariates Z are different from the predictors X̃. As will be detailed in the next section, we
adopt a similar approach as in [4] to first estimate the unknown functions {βr (·)} and the direc-
tion, η, simultaneously. We then target the regression parameters, γ , by weighted averages of
the {βr (·)} estimates.

Before we proceed to the estimation, we note some important distinctions between the
proposed MCAR models and varying coefficient models. MCAR can be viewed as a latent
variable model, where the underlying linear model has general multiplicative distortion struc-
tures. Furthermore, the connection between MCAR and the varying coefficient model (7) is
a convenient estimation tool that is used to recover the underlying relationship between the
latent response and the predictors, free from the distorting effects of {Z1, . . . , Zs}. Therefore,
one of the main distinctions between MCAR and varying coefficient models is that the dis-
torting variables, namely the Z’s (or the single index U = ηTZ), are considered ‘nuisance’
variables under MCAR. On the contrary, these are of main interest in a varying coefficient
model analysis.
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Multicovariate-adjusted regression models 817

3. Estimation of the underlying regression parameters

To motivate our estimation algorithm for the underlying regression parameters, {γr}, in
the MCAR model, let us first consider the case where η is known. With η known, the
form of the distorting covariates U ≡ η1Z1 + · · · + ηsZs is completely observed. This is
equivalent to having a single observable covariate U . Thus, the adaptive varying coeffi-
cient model, given by equation (7) reduces to a standard varying coefficient model, Ỹ =
β0(U) + ∑p

r=1 βr (U)X̃r+ ∈. We emphasise that the uncertainty due to η is now completely
eliminated. Under this situation, the following weighted-average estimators are consistent for
the underlying regression parameters {γr},

γ̂0∗ = n−1
n∑

i=1

β̂0(Ui) and γ̂r∗ = 1

X̃

n∑

i=1

1
n
β̂r (Ui)X̃ir , (9)

where X̃r = n−1 ∑n
i=1 X̃ir , Ui = ηTZi and {β̂r (·)} are local linear estimators of the varying

coefficient functions. Explicit formulas for {β̂r (·)} are given in the next section. The consistency
of γ̂r∗, r = 0, . . . , p follow from the consistency result for the case of a univariate covariate
given in [15]. The estimators in equation (9) provide a benchmark for systematically studying
the performance of the proposed iterative MCAR estimator, where η will not be known. We
also note that the special weighting scheme utilised in equation (9) was originally proposed
in [2] and it was designed to eliminate the impact of the distorting functions. However, they
used a binning approach rather than local linear estimators for {βr (·)}, which was recently
proposed in [15]. The later approach equation (9) will be used here, although both approaches
are equivalent for large sample sizes.

When η is unknown, we also need to estimate ηTZi for the ith subject (i = 1, . . . , n). Given
the consistency of equation (9) and the established relationship in section 2, we adopt a hybrid
backfitting algorithm similar to the one proposed for adaptive varying coefficient models [4]
to simultaneously estimate ηTZ and βr (η

TZ). Briefly, the algorithm for estimating the varying
coefficient functions consists of two main steps. Step (1) Given an initial vector (or starting
value) η0, estimate the varying functions βr (·), using local linear regression. These are the
initial local linear estimates for {βr (·)}. Step (2) Next, fixing {βr (·)} (i.e., obtained based on
η0), one can search for or update η using a one-step Newton–Raphson scheme. Steps (1) and
(2) are repeated/iterated until convergence occurs based on a mean squared error criterion. Let
η̂ be the value at convergence and {β̂r (η̂

TZ)}pr=0 be the corresponding local linear estimates of
the coefficient functions. Using these estimates in combination with the distortion eliminating
weights, we arrive at the MCAR estimators of the underlying regression parameters, analogous
to the consistent benchmark estimators (9),

γ̂0 = n−1
n∑

i=1

β̂0(η̂
TZi ) and γ̂r = 1

X̃

n∑

i=1

1
n
β̂r (η̂

Tzi )X̃ir , (10)

3.1 Initial local linear regression estimators for βr(·)

For a given η, the varying coefficient function βr (·) can be approximated based on local linear
modelling as βr (η

TZ) ≈ βr (u) + β ′
r (u)(ηTZ − u), r = 0, 1, . . . , p, for ηTZ in a neighbor-

hood of u [16]. The β ′
r (·) denotes the derivative of βr (·). The local linear estimators of {βr (·)}
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818 D. V. Nguyen and D. Şentürk

are obtained by minimising the sum

n∑

i=1

[

Ỹi −
p∑

r=0

{
br + cr(η

T)X̃ir

}]2

Kh(η
TZi − u),

with respect to {br, cr} and for a specified kernel function K with bandwidth h. This min-
imisation is a weighted least squares problem, so the local linear estimators follow directly
from least squares theory. Let β̂r (u) = b̂r , β̂

′
r (u) = ĉr and α̂ ≡ (b̂0, . . . , b̂p, ĉ0, . . . , ĉp)T.

The local linear regression estimates α̂ is given by α̂ = ∑
(u)χ(u)TW(u)Ỹ, where W(u) =

diag{Kh(η
TZ1 − u), . . . , Kh(η

TZn − u)}, Kh(·) = K(·/h)/h, Ỹ = (Ỹ1, . . . , Ỹn)
T,

∑
(u) =

{χ(u)TW(u)χ(u)} − 1 and χ(u) are the n × 2(p + 1) matrix

χ(u) =





1 X̃11 . . . X̃1p (ηTZ1 − u) (ηTZ1 − u) . . . (ηTZ1 − u)X̃1p

...
...

. . .
...

...
...

. . .
...

1 X̃n1 . . . X̃np (ηTZn − u) (ηTZn − u) . . . (ηTZn − u)X̃np





The local linear approach requires selection of the bandwidth h. We apply the generalised
cross-validation (GCV) criterion [17, 18] to select the bandwidth, as was done in [15]. Briefly,

for a given η, β̂r (η
TZ) is linear in {Ỹi}ni=1. Therefore, the fitted values, ˆ̃Y = ( ˆ̃Y1, . . . ,

ˆ̃Yn)
T,

where ˆ̃Yi = ∑p
r=0 β̂r (η

TZi )X̃ir , are also linear in {Ỹi}ni=1. This means that ˆ̃Y = V(h)Ỹ, where
V(h) is the n × n hat matrix. (The formula for V(h) can be found in [15] or [4].) The bandwidth
h is selected to minimise the following GCV criterion, which is a function of the residual sum

of squares RSS = ‖Ỹ − ˆ̃Y‖2,

GCV(h) = n−1RSS[1 − n−1trV(h)]−2. (11)

3.2 Updating the coefficients of the linear combination of covariates

Given the functions {βr (·)}, we can search for the coefficients, η, by minimising the mean
squared error criterion

M(η) = 1
n

n∑

i=1

{

Ỹi −
p∑

r=0

βr (η
TZi )X̃ir

}2

. (12)

A one-step iterative estimation procedure, analogous to the one-step Newton–Raphson esti-
mation, can be used to update η, as was done in [4] (see also [19]). More precisely, the updated
coefficient vector can be obtained as

η1 = η0M̈(η0)
−1Ṁ(η0), (13)

where Ṁ(·) and M̈(·) are the derivative and the Hessian matrix of M(·), respectively, and
η0 is the initial vector. The above estimator for η is based on the approximation 0 = Ṁ(η̂) ≈
Ṁ(η0) + M̈(η0)(η̂ − η0), where η̂ is the minimiser of equation (12). This approximation holds
when the initial value η0 is ‘close’ to η. Therefore, we carefully examine this aspect in our
numerical studies in section 4, via a detailed analysis of the sensitivity to initial values.

We point out here that the existence of a function of the form
∑p

r=0 βr (η
TZ)X̃r that

minimises equation (12) was proven in [4] under mild conditions (see Theorem 1 of [4]).
The uniqueness of η and βr (·) also follow, if we choose ‖η‖ = 1 and the first non-zero
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Multicovariate-adjusted regression models 819

component of η to be positive. These conditions were incorporated into the proposed MCAR
estimation algorithm. However, we note that the uniqueness of η and βr (·) separately are
not critical for MCAR estimation, as long as βr (η

TZ) is unique. This is because the targeted
quantities of interest are the underlying regression parameters, γ , not the varying functions
{βr (·)}.

3.3 Outline of the iterative algorithm

We summarise the full algorithm to obtain the estimates of the underlying regression para-
meters under the MCAR model given by equation (10). Let η0 be the normalised initial value
and {h1, . . . , hK} be a sequence of bandwidth values.

The algorithm is summarised in four main steps below.

(a) Specify the initial value η0, bandwidths {h1, . . . , hK} and convergence criterion δ.
(b) For each bandwidth hk(k = 1, . . . , K) iterate/repeat (b1)–(b3) below until the abso-

lute difference in mean square errors, |M(η1) − M(η0)|, is less than δ, where η1 is the
new/updated value.
(b1) Given initial value η0, estimate the varying coefficient functions {βr (·)}pr=0, using

local linear regression, as described in section 3.1.
(b2) Given the varying functions {βr (·)}pr=0 (from b1) estimate/update the coefficients,

η1 = η0 − M̈(η0)
−1Ṁ(η0), as described in section 3.2.

(b3) Update the initial vector, η0 → η1, and repeat b1–b2 until convergence: |M(η1) −
M(η0)| < δ. The updated η1 is normalised, i.e., η1 → η1/‖η1‖, as described in
section 3.2.

(c) Denote the final estimated coefficient vectors, for bandwidths {h1, . . . , hK}, by
η̂1, . . . , η̂K , respectively. To determine the choice of bandwidth, compute {GCV(hk)}Kk=1

given by expression (11) using η̂k and {β̂(η̂T
k Zi )}pr=0, for i = 1, . . . , n. The final selected

estimates, denoted by {β̂(η̂TZi )}pr=0, correspond to argminhk{GCV(hk)}.
(d) Finally, compute the estimates γ̂r given by equation (10).

In the implementation, we standardise the covariates {Z} to have a sample mean 0 and
covariance matrix Is and iterate until convergence or when the number of iterations exceeds
40. Also, to reduce the computation, we estimate the βr (·) (step C) on 101 regular grid points
on [-2, 2] and used linear interpolation to obtain values of the functions on the interval. (The
(estimation) approximation of βr (·) based on the grid points relative to the estimation based
on the full n data points are very similar.)

4. Simulation studies

The primary aim of the simulation studies here is to assess how well the MCAR estimator, γ̂ ,
targets the vector of true underlying regression parameters, γ . We examine the bias and mean
square error (MSE) of the MCAR estimator relative to (a) a baseline and (b) a benchmark.
The benchmark estimator is obtained by assuming that η is known (i.e., the estimator given by
equation (9)), which is consistent for γ . The baseline estimator is obtained simply by using
the initial vector, η0, without the iteration steps b1–b3 (i.e., taking η b to be η0). Thus, we
expect the performance of the MCAR estimator to be between the baseline and the benchmark.
Additionally, because the bias of the MCAR estimator will depend on the uncertainty due to
the unknown coefficient vector, η, a study of the performance of the MCAR estimator requires
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820 D. V. Nguyen and D. Şentürk

attention to the sensitivity to the initial vector, η0. Therefore, we examine the performance of
the MCAR estimator for different starting values in all simulation studies.

4.1 Simulation design

To study the numerical properties of the MCAR estimator, we used the following simulation
design. The underlying regression model considered was Y = γ0 + γ1X1 + γ2X2 + γ3X3 + e,
where the parameters are (γ0, γ1, γ2, γ3) = (3, −1, 1, 1.5). The error variable is e ∼ N(0, 1)

and X = (X1, X2, X3)
T ∼ N3(µX,

∑
X), with mean µX = (3, 1, 2)T and covariance matrix

∑
X

=




0.81 0.50 0.30
0.50 1.0 0.90
0.30 0.90 2.03



 .

Thus, the predictor correlations are ρ(X1, X2) = 0.5556, ρ(X1, X3) = 0.2357 and
ρ(X2, X3) = 0.6364. To simulate the distorted (observed) data, we consider the follow-
ing distorting functions, ψ(U) = 1 + U/4,φ1(U) = (U2 + 1)/2,φ2(U) = (U 2 + 2)/3 and
ψ3(U) = 1 + U 3/50, where U ≡ ηTZ. (The constants in the above distorting functions
were chosen to satisfy the identifiability constraints (6), specifically E{ψ(U)} = 1 and
E{ψr (U)} = 1.) Thus, the distorted (observed) response and predictors are Ỹ = ψ(U)Y

and X̃r = ψr (U)Xr , as given by equation (5). Under this simulation setting, we consid-
ered the following four main cases for the distribution and dimension of the covariates,
Z = (Z1, . . . , Zs)

T.

Case 1 Two independent covariates, Z1 and Z2, uniformly distributed on [−1, 1] (denoted
Zi ∼ U [−1, 1]) were considered.

Case 2 For this case, we considered two dependent covariates, Z = (Z1, Z2)
T, distributed

as bivariate normal with mean µZ = (0, 1)T, correlation ρ(Z1, Z2) = 0.80, var(Z1) = 1 and
var(Z2) = 0.5.

Case 3 Case 1, repeated in three dimensions, i.e., Z = (Z1, Z2, Z3)
T, with Zi ∼ U [−1, 1].

Case 4 To examine the dependent covariates in three dimension, we considered Z ∼
N3(µZ,

∑
Z), where µT

Z = (0.5, 0, 1) and

∑
Z

=




0.3333 0.4041 0.1225
0.4041 1.0000 0.2828
0.1225 0.2828 0.5000



 .

For the two and three distorting covariate cases, the unknown coefficient vectors to be esti-
mated are η = (0.3162, 0.9487)T and η = (0.1162, 0.3487, 0.9300)T(‖η‖ = 1), respectively.
In each simulation study, we generated 200 Monte Carlo data sets. For each generated data
set, we obtained the MCAR, baseline and benchmark estimates. We considered sample sizes
of n = 250, 350, 550 and 750. Also, to satisfy the assumption of bounded support for Z [2],
we used a normal distribution truncated at ± 2.5 standard deviation for cases 2 and 4. (The
results are similar for truncation at ± 3 standard deviation.)

We take the sequence of bandwidths {h1, . . . , hK} to be {0.180, 0.200, 0.240, 0.288, 0.346,

0.415, 0.498, 0.597, 0.7170.860, 1.032}, which spans between 0.18 and 1.03 standard devia-
tion of the covariate data {Zi}. The set of bandwidth values was generated to cover a range of
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Multicovariate-adjusted regression models 821

the standard deviation of the data (U ) from the sequence 0.2(1.2)k−1 for a sequence of integer
k = 1, . . . , K . We initially explored the sequence of bandwidth {0.10, 0.12, . . . , 2.67} (i.e.,
0.1(1.2)(k−1)k = 1, . . . , 19), which covers 0.1 to 2.67 times the standard deviation of the data.
However, preliminary simulation study suggests that GCV did not select bandwidths greater
than about 1 standard deviation of the data. Thus, we reported the simulation study results
using the reduced bandwidth sequence {0.18, . . . , 1.032}. For the local linear estimators of
the varying functions, we used the Epanechnikov kernel K(t) = 0.75(1 − t2)+. In searching
for η, we stopped the main iteration (steps b1–b3) if the convergence criterion was reached or
the number of iterations exceeded 40 (for each bandwidth). The convergence criterion is met
if the absolute difference between successive values of mean square errors, |M(η1) − M(η0)|,
is less than 0.001.

4.2 Experimental results: numerical properties

For a given initial coefficient vector η0, the angle between η0 and the true coefficient vector η is
θ0 = (180/π) cos−1(ηT

0 η). We call θ0 the ‘initial’ angle corresponding to the initial vector η0.
To study the sensitivity of the MCAR estimator, γ̂ , to the initial vector,η0, we implemented sim-
ulation studies for various different starting vectors with initial angles ranging from 15◦ to 120◦.
We included in this range the ‘neutral’ initial vector given by ηT

0 = (1/
√

s, . . . , 1/
√

s)1×s ,
which is the vector (c, . . . , c)T normalised (for any positive constant c). For two covariates,
the neutral initial vector η0 = (0.7071, 0.7071)T is about θ0 = 27◦ from η. Similarly, for three
covariates, η0 = (0.5774, 0.5774, 0.5774)T is about θ0 = 36◦ from η. Table 1 displays twelve
initial starting vectors (and angles) corresponding the two- and three-dimensional cases we
examined in the simulation studies.

Estimates and mean square errors (MSEs) for the MCAR, the baseline and the bench-
mark estimator are displayed in figure 1 for simulation Case 1 (Z = (Z1, Z2)

T ∼ U [−1, 1]2).
Displayed are results corresponding to the six different starting vectors η0. Each value plotted
is an average over the 200 simulation runs, each with a sample size of n = 350. The left
column of the four plots (top-down) corresponds to the estimates of γ0 = 3, γ1 = −1, γ2 = 1,
and γ3 = 1.5. As expected, the benchmark estimator (which uses the true η) is closest to the
true underlying regression parameters (γr , r = 0, . . . , 3). Given a ‘good’ starting value, for
instance the η0 corresponding to µ0 = 15, the MCAR estimator performs well. In this case,
the MCAR estimates, γ̂ , are indistinguishable from the benchmark. For all six starting values
considered, the MCAR estimator improves substantially (i.e., has lower bias) relative to the
baseline estimator. However, as anticipated, the performance of MCAR does vary, depending

Table 1. Starting values. Given are the initial vectors, η0, used for the
two and three distorting covariates cases. Also given are the corresponding
angle between each initial vector and the true vector η. Note that the initial
vectors corresponding to ‘70a’ and ‘70b’ have an initial degree of 70, but

the orientations or directions are different.

Two covariates Three covariates

Initial vector ηT
0 θ0 Initial vector ηT

0 θ0

(0.0599, 0.9982) 15 (0.3743, 0.3119, 0.8733) 15
(0.7071, 0.7071) 27 (0.5774, 0.5774, 0.5774) 36
(0.9285, 0.3714) 50 (0.6880, 0.6192, 0.3784) 50
(0.9996, 0.0300) 70a (0.9300, 0.3487, 0.1162) 70a
(−0.7809, 0.6247) 70b (0.9389, −0.1539, 0.3078) 70b
(0.6627, −0.7489) 120 (0.4554, 0.4554, −0.7650) 120
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822 D. V. Nguyen and D. Şentürk

Figure 1. Case 1: Two independent (uniform) covariates. Given in the left column are the MCAR estimates (solid),
γ̂ , the baseline (dotted) and benchmark (dashed) estimates. The true underlying parameters are indicated by the solid
grey lines. The x-axis is the initial angle for each starting vector η0. The corresponding MSEs are given on the right
column. Results are based on 200 Monte Carlo data sets (n = 350).
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Multicovariate-adjusted regression models 823

on the initial vector η0 (corresponding to θ0 = 15, 27, 50, 70a, 70b or 120). This is expected
because the Newton–Raphson approximation (13), which inherently depends on the starting
η0 (as well as the sample size n, addressed in the next section). Also, we note that an increase
in the angle (θ0) between η0 and the true coefficient vector η does not necessarily translate to
a worst estimate of the underlying regression parameters. This is illustrated with the different
results corresponding to θ0 = 70a and 70b. Although the angles for the two initial vectors are
both 70◦, the starting orientations (or directions) are different. Depending on the complexity
of the surface M(η), different starting orientations of η0 can lead to different results.

The corresponding MSEs for simulation Case 1 are displayed in the right column of plots
within figure 1. Since the benchmark estimator uses η̂ ≡ η, it does not depend on the starting
value. Thus, the benchmark MSE is constant across θ0 (as are the estimates, displayed in the left
panel of figure 1). The MSE pattern suggests that the MCAR estimator clearly improves over
the baseline and approaches the benchmark MSE, where the uncertainty regarding the unknown
η has been eliminated. Also, for some initial vectors, the MSE for the MCAR estimator
coincides with the benchmark MSE. The typical pattern of results, summarised for simulation
Case 1 above, also holds for the two dependent (normally distributed) covariates (Case 2), for
three independent uniform covariates (Case 3) as well as three dependent (normally distributed)
distorting covariates (Case 4). The corresponding figures summarising the results for Cases

Figure 2. Sample size effect. Plotted are the MCAR estimates of γ0 = 3 as a function of sample size n (x-axis).
Generally, the MCAR estimates improve as n increases for each of the six starting vectors η0, corresponding to
θ0 = 15, 27, 60, 70a, 70b and 120 (simulation case 1).
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824 D. V. Nguyen and D. Şentürk

2 through 4 are similar to figure 1 – therefore they are omitted here (and made available at
http://dnguyen.ucdavis.edu/.html/mcar.html). However, we note the following two specific
observations: (1) the bias and MSE are smaller for uniform covariates and (2) the bias and
MSE are higher for the three-dimensional covariate Z. This is not surprising because the search
for η, through minimisation of M(η) using the Newton–Raphson procedure, can become
increasingly challenging as the dimension increases.

We note that the Var(γ̂r ), estimated from the simulation runs, follows similar patterns as
the MSEs given figure 1. With the uncertainty due to the unknown η removed, the benchmark
estimator has the least variability and the (non-adaptive) baseline estimator has substantially
higher variance than the MCAR estimator. For example, with three normally distributed covari-
ates, the variances for estimating γ3 corresponding to the baseline, MCAR and benchmark are
0.0222, 0.0125 and 0.0042(θ0 = 70a), respectively. Thus, the variance of γ̂3(MCAR) is about
56% of the variance of γ̂3(baseline). Generally, the MCAR estimator has smaller variance than
the baseline estimator.

Although the quality of the estimates, γ̂ , depends on the initial value η0, it should improve
as n increases. We examined this property for the MCAR estimation algorithm. The results,
summarised in figure 2, indicate that the MCAR estimates approach the true parameters as n

increases. That is, the bias of the MCAR estimator decreases as the sample size n increases
from 250 to 550. We observed this to be true for all initial values considered, except for the
case corresponding to θ0 = 120 where the bias remained similar for sample sizes between
250 and 550. Displayed in figure 2 are the results only for γ0 and for the six starting vectors
(corresponding to µ0 = 15, 27, 50, 70a, 70b and 120). Similar results were found for the
other regression parameters parameters (γ1, γ2, γ3) (results not shown). The median selected
bandwidths corresponding to the six starting values were 0.2, 0.3456, 0.4147, 0.4147, 0.3456
and 0.4147, for the simulation Case 1 (n = 350). The median selected bandwidths for the
other simulation cases were similar, ranging between 0.2 and 0.42.

5. Application to Pima Indian diabetes data

We illustrate the MCAR approach using a Pima Indian diabetes data set, which consists of
508 women at least 21 years old and of Pima Indian heritage. Briefly, patients with Diabetes
Mellitus Type 2 may produce sufficient levels of insulin, but have abnormal insulin action (e.g.,
insulin resistance) that prevents the body from normal utilisation of glucose. The problem
of type 2 diabetes is also emerging in children and adolescents as well [20]. Typical chronic
complications associated with diabetes are renal disease, loss of visual acuity, limb amputations
and cardiovascular diseases, including hypertension. Obesity is a risk factor in both diabetes
and hypertension.

To illustrate the methodology, we investigate the relationship between plasma glucose (glu)
concentration and and a hypertensive measure, diastolic blood pressure (dbp). In particular, we
examine the following postulated underlying regression model between the response and pre-
dictor:glu = γ0 + γ1dbp+ e. Both the response and the predictor are potentially affected by
various measurements of body configuration, including BMI (Z1 = bmi) and triceps skin fold
thickness (Z2 = sft). Therefore, we directly adjust for these potential distorting covariates
using the proposed MCAR method. The Pima Indian diabetes data set used here for illus-
tration can be obtained at http://archive.ics.uci.edu/ml/datasets/Pima+Indians+Diabetes.
We analysed the complete data available on n = 508 subjects 21 to 55 years old: response and
predictors {g̃lui , d̃bpi}508

i=1 and distorting covariates {(bmii,sfti)}508
i=1.

A regression of g̃lui on d̃bpi , leads to the adaptive varying coefficient model, g̃lui =
β0(Ui) + β1(Ui)d̃bpi+ ∈ (Ui), where Ui = η1b̃mii + ηs̃fti . One interpretation of Ui is
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Multicovariate-adjusted regression models 825

that it is a generalised index of obesity, which is relevant to both diabetes and hypertension,
because obesity increases both insulin resistance and the risk of complications from high blood
pressure. The estimated intercept and slope varying coefficient functions, β̂0(Ûi) and β̂1(Ûi),
are displayed in figure 3 with selected index η̂T = (0.5546, 0.8321) and bandwidth 1.14. The
MCAR estimates of the underlying regression parameters adjust for the potential distorting
effects of BMI and triceps skin fold thickness through the estimated varying coefficients. The
MCAR estimates are (γ̂0, γ̂1) = (92.955, 0.375). We estimate the standard errors of γ̂0 and γ̂1

based on 500 bootstrap samples. The corresponding standard error estimates are ŝ.e.(γ̂0) =
8.608 and ŝ.e.(γ̂1) = 0.121. The MCAR estimates and associated standard error estimates
suggest that elevated levels of (diastolic) blood pressure is associated with increased plasma
glucose concentration, even without the potential distorting effect of the generalised obesity
index U .

The γ̂ reported is based on the initial vector η0 = (0.7071, 0.7071)T. We also obtained
various MCAR estimates based on different starting vectors to assess the stability of the
MCAR estimates. In all starting values considered, the regression parameter estimates were
similar; therefore, we take this as an indication that the given MCAR estimates are stable for
the given data.

Next, based on the estimated varying coefficient functions β̂0 and β̂1(Ûi), given in figure 3,
we examine the form and type of distortion that the obesity index, U , has on the underlying
plasma glucose and diastolic blood pressure.As mentioned in the Introduction section, without
a priori knowledge of the specific form of the distortion, a simple approach to distortion
adjustment is to divide by U . This approach assumes a special linear distortion of the form
ψ(U) = ψ(U) = U and that the distorting effect of the obesity index on plasma glucose and
blood pressure are identical. If this assumption holds, then it follows that β1(U) is constant.
Therefore, it is adequate to check to see if β1(U) is a flat horizontal line. The estimated β̂1(U)

in figure 3 suggests that this assumption may not hold and that the distortion effect of the
obesity index on blood pressure is different from its effect on plasma glucose. Therefore, a
simple adjustment via division by U is not justified. Additionally, the distortion effect of the
obesity index on plasma glucose can be assessed directly from the estimated intercept function
because β0(U)∞ψ(U). The estimated intercept function β̂0(U) in figure 3 suggests that the
distortion on the response may be nonlinear in U . We also note that although the MCAR
method adjusts for the distortion of U , whether the distortion is of a multiplicative, additive or
no-distortion type, the specific type of distortion can also be assessed. That is, if the distortion
effect of the generalised obesity index on plasma glucose and blood pressure is additive
(i.e., g̃lu = ψ(U) + glu, d̃bp = ψ(U) + dbp), then β1(U) = γ1 [2]). Again, the estimate
β̂1(U) is not constant; therefore, the results do not support an additive distortion model.

Figure 3. Estimates of varying coefficient functions, β0(u) and β1(u), from the Pima Indian data, corresponding
to the intercept and the predictor variable dbp. The selected bandwidth is 1.14.
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826 D. V. Nguyen and D. Şentürk

6. Discussion

The work presented here on MCAR extends the contaminated regression modelling capability
by allowing for multiple distorting covariates, without restrictive assumptions on the exact
form of the contaminating functions. Modelling the contaminations as general functions,
although more complex, does have the added flexibility needed to adapt to varying levels of
distortion complexities on the latent variablesY and Xr . However, despite the added modelling
complexities, the interpretation of the latent variables remains the same. More precisely, they
are defined as the parts of Ỹ and X̃r that are free from the effects of U . This interpretation
applies to the simplest case of the univariate linear distortion model (1), where U = Z and in
the multicovariate distortion model (3), where U = βT Z. Additionally, if model (1), which
assumes that the distorting functions are identity functions, is not correct then the adjusted
variables will not be free from the effects of U . Instead, the division of Ỹ and X̃ by U in
model (1) would lead to an artificial dependency between Y and X, since they would both be
dependent on U by the division.

Additionally, by design, MCAR is robust to distortion model misspecification. Thus, an
advantage of MCAR is that the estimation method targets the correct parameters under three
distortion models: (1) additive, (2) multiplicative and (3) no distortion, as in the covariate
adjusted regression approach of Senturk and Muller [2]. Hence, the type of the distortion need
not be known/specified for MCAR adjustment to be applicable. It is automatically adaptive
to the above three types of distortion settings in that it will yield correct parameter estimates
under all three settings. Also, the proposed framework allows for assessment of whether the
distortion model can be reduced to an additive distortion, so that a simpler adjustment can be
employed. To check whether the distortion is additive, it is sufficient to check whether the slope
varying coefficient function is approximately a constant function. This is because, under an
additive distortion on the response and predictor, the slope in the varying coefficient regression
obtained from regressing the observed response on the observed predictor is constant.
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